
PYKC 1st Feb 2008 1 Version 1.0

Department of Electrical & Electronic Engineering
Imperial College of Science Technology & Medicine

3rd year Digital Systems Design Course Work

Introduction

This coursework is designed to give you practical digital design skills to complement the lectures.
You will be designing a module (which may contain various sub-modules) to perform
transformations or distortions on real-time video taken from a camera.

In order to reduce the coursework to a manageable size, you will be given a framework which
performs the function of video capture and display. A separate document will provide a detailed
description of that framework and how you may use it.

This specification document explains the idea behind the distortion algorithms and describes what
are expected for different level of attainment (and marks).

You will be working in pairs (or singly if you prefer), and you are responsible to find your own
partner.

Deadline

Demonstration (in Level 5 Lab): Friday, 27th March 2009 (a timetable will be set up)
Report: Friday, 3rd April 2009

Please submit electronically

• A no-nonsense report documenting your design (don’t write long reports with words
that do not add to its content), including clear diagrams showing the overall design
and other diagrams/codes. (Use PDF)

• Some evidence that your design works.
• Justification on any design choices made.
• Signed copy of contribution of each member of the pair (if you work in a pair).
• A zipped design directory uploaded including the design and report.

Equipment

You will be using the Terasic DE2-70 boards (these are upgraded version of the DE2 board) in
Level 5 3rd/4th year lab. The design environment will be Altera’s Quartus II.

PYKC 1st Feb 2008 2 Version 1.0

Basic Requirement of the project

In order to help you learn about the underlining problem, I have provided you with a MATLAB
function that performs simple transformations. The goal is to perform this type of operations
using the DE2-70 hardware in real-time.

You need to implement the following distortions as specified by SW0:

SW18=0: Rotation – rotate the video by θ degrees, where θ is specified by SW0-SW5 in

increments of 5 degrees.
SW18=1 Spinning - As 1 above, but this time rotate the video by θ degrees every 50 ms.

If you use the table lookup method to generate the sine/cosine values, you will get a B-C grade.
If you use a CORDIC module from elsewhere (such as free IP block desgined by others) to
generate the sine/cosine values, you will get a B+ grade. If you design your own CORDIC
module, you will get an A grade.

The following document provides guidelines about video distortion including rotation, edge
detection and blurring. The algorithms are provided as MATLAB code for you to get familiar
with. We only use a static image (Clown) for this purpose.

Getting Started

Loading the test image
To make things nice and easy for you we’ve given you an image and a Matlab function to display
the image. The image shown in Figure 1 is a 200x320 grey scale image called “clown” for you to
work with.

Figure 1 - Grey Scale 200x320 Image "clown"

To load the image into your workspace type (you can find the image file on the course webpage):

PYKC 1st Feb 2008 3 Version 1.0

» load clown

The Image Format
The image is stored as a 2 dimensional array of grey scale values in the range 0 to 1. To return the
grey scale value of the image at co-ordinate (x,y) type:

» clown (y,x)

So typing clown (20,319) Matlab responds with:
ans =

 0.1554

Which is the grey scale value of the image at (319,20).

Displaying Images
The function show(Image Name) has been given so you can display the images. To display the
clown image you previously loaded type:

» show (clown)

Example - Image Rotation

The main task in this project is to perform rotation. As example is shown below where the
original image is rotated by about 9 degrees, as shown in Figure 2.

Figure 2 - Original "clown" Image & the image rotated by 0.3 radians

• The function has the following format in Matlab (angle specified as radians here, but you
should use degrees in the hardware design):

function [Out] = rotate(In, Theta)
• The resulting image has the same size as the original. (i.e. the matrix storing the image have

the same dimensions, so some clipping of the image may occur)
• If a source pixel lies outside the image it is painted black.
• Use “nearest pixel” only: for example if the source pixel required is (34.43,46.667) the pixel

at the location (34,47) in the source image is.
• The rotation is performed about the centre of the image.

PYKC 1st Feb 2008 4 Version 1.0

Everything You Need To Know About Rotating Images
Just in case your maths is a bit rusty, here’s the basics of image rotation:

Equation 1 - Equation for rotation of theta about image centre

The way to use the forward mapping would be as follows:

For each pixel in the source image
 {

Work out the destination pixel location using the forward mapping
equation.

Paint that destination pixel with the source image value.
}

Figure 3 - Using Forward Mapping

But!…
The problem with using the forward mapping directly is demonstrated by Figure 3; Firstly there
are pixels in the destination image with more than one source pixel. More of a problem is the fact
that some pixels are never written to, leaving the destination image with holes!

PYKC 1st Feb 2008 5 Version 1.0

The way around this is to use the reverse mapping equation in Equation 2. This works out where
each destination pixel came from in the source image. This uses the inverse of the transformation
matrix, which fortunately is easy to work out using the Matlab inv() function.

Equation 2 - Reversing mapping of equation 1

Figure 4 - Using Reverse Mapping

So the way to use the reverse mapping would be as follows:

Calculate the inverse transformation matrix
For each pixel in the destination image
{

Work out where the pixel maps to in the source image, using the
reverse mapping equation

 Paint the destination pixel with that source pixel value.
}

The MATLAB code that perform this rotate function is given in Appendix A.

Ripple Effect

If you are interested in getting A++ grade on this course work, read on.

The effect to be bonus marks (and a real challenge) is to add ripple effect to the moving image.
The basic algorithm is as follows:

1) Translate destination pixel location according to centre of ripple. E.g. for ripple in centre:
 [x',y'] = [x-width/2,y-height/2]

2) Covert coordinates into polar [x',y'] -> [r, θ] (you can use CORDIC for this).

3) Modify r -> r' according to something like r' = r + A*sin(r*2*π/L + Offset)
 A = 'Amplitude'

PYKC 1st Feb 2008 6 Version 1.0

 L = 'Wavelength'
 Offset = 'Angle offset' can be 0

(You can also use CORDIC for this step to give you the sin().)

4) Convert back to Cartesian coordinates [r', θ] -> [x'',y''] - CORDIC again!!!

5) Add back in original translation [x''',y'''] = [x''+Width/2,y''+Height/2]

6) Set destination pixel with source pixel Pdest[x,y] = Psource[x''',y''']

The CORDIC can be made to give you the polar conversions directly, and can be used to
calculate the additional sin() as well. Don’t forget always to use inverse mapping (i.e. start from
output frame and work out where in the input frame you should get the data).

PYKC 1st Feb 2008 7 Version 1.0

APPENDIX A – Matlab Code to perform Rotation

